Moving in extreme environments: inert gas narcosis and underwater activities
نویسندگان
چکیده
منابع مشابه
Recent neurochemical basis of inert gas narcosis and pressure effects.
Compressed air or a nitrogen-oxygen mixture produces from 0.3 MPa nitrogen narcosis. The traditional view was that anaesthesia or narcosis occurs when the volume of a hydrophobic site is caused to expand beyond a critical amount by the absorption of molecules of a narcotic gas. The observation of the pressure reversal effect on general anaesthesia has for a long time supported the lipid theory....
متن کاملA review of recent neurochemical data on inert gas narcosis.
Nitrogen narcosis occurs in humans at around 0.4 MPa (4 ATA). Hydrogen narcosis occurs between 2.6 and 3.0 MPa. In rats, nitrogen disturbances occur from 1 MPa and a loss of righting reflex around 4 MPa. Neurochemical studies in striatum of rats with nitrogen at 3 MPa (75% of anesthesia threshold) with differential pulse voltammetry have demonstrated a decrease in dopamine (DA) release by neuro...
متن کاملNarcosis and Emulsion Reversal by Inert Gases
Investigations of the effect of high pressures of Na (100 to 130 atmospheres) and of Ar (60 to 80 atmospheres) showed that these gases are effective in reversing the phases of an oil in water emulsion. Nitrous oxide did not cause reversal at pressures as high as 53 atmospheres nor did helium as high as 107 atmospheres. We found CO(2) most effective in reversing the emulsions and attributed this...
متن کاملRisk analysis for autonomous underwater vehicle operations in extreme environments.
Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a...
متن کاملHot nanoindentation in inert environments.
An instrument capable of performing nanoindentation at temperatures up to 500 degrees C in inert atmospheres, including partial vacuum and gas near atmospheric pressures, is described. Technical issues associated with the technique (such as drift and noise) and the instrument (such as tip erosion and radiative heating of the transducer) are identified and addressed. Based on these consideration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Extreme Physiology & Medicine
سال: 2015
ISSN: 2046-7648
DOI: 10.1186/s13728-014-0020-7